
JPP 2007, 59: 1687–1695
© 2007 The Authors
Received February 19, 2007
Accepted July 6, 2007
DOI 10.1211/jpp.59.12.0011
ISSN 0022-3573

1687

Peroxynitrite and nitrosoperoxycarbonate, a tightly 
connected oxidizing–nitrating couple in the reactive 
nitrogen–oxygen species family: new perspectives for 
protection from radical-promoted injury by flavonoids 

Radmila Pavlovic and Enzo Santaniello 

Abstract 

Peroxynitrite is the product of the reaction of nitric oxide with superoxide radical and is implicated in
the pathogenesis of a wide variety of human diseases, being responsible for in-vivo oxidation/nitra-
tion events. Nitrosoperoxycarbonate anion, formed by the interaction of peroxynitrite with CO2/bicar-
bonate at physiological concentrations, provides a new interpretation of oxidative/nitrative processes
formerly attributed to peroxynitrite. The aim of this review is to summarize the chemistry and biology
of peroxynitrite and radical species related to nitrosoperoxycarbonate anion, as well as the informa-
tion available regarding the molecular mechanisms that determine and regulate radical-promoted
injury by the two tightly connected species at physiological concentrations. Interception of carbonate
and nitro radicals produced by interaction of peroxynitrite with CO2/bicarbonate, as in-vivo preven-
tion of pathological events, creates new perspectives for the evaluation of safe scavengers of oxida-
tive/nitrative stress at the physiological level. In this respect, natural products such as flavonoids hold a
preeminent position among the vast array of compounds endowed with such properties. 

Introduction

Nitric oxide (nitrogen monoxide, •NO), first described as the principal endothelium-derived
relaxing factor, is involved in a variety of physiological and pathophysiological events
(Ozben & Tomasi 2003). •NO is a free radical with an unpaired electron that is physiologi-
cally generated from L-arginine under the catalytic control of three different nitric oxide
synthase (NOS) isoforms (Alderton et al 2001). Nitric oxide can directly interact with bio-
logical targets only at low concentrations and/or if exposure of the biological system occurs
for short periods of time. However, indirect •NO effects are provoked by the action of reac-
tive nitrogen–oxygen species (RNOS) formed by the reaction of •NO either with O2 or
superoxide anion. Principally, RNOS are formed under high local concentrations of •NO or
owing to long-term exposure to nitric oxide (Wink & Mitchell 1998; Eberhardt 2000; Espey
et al 2002; Dedon & Tannenbaum 2004). 

As a free radical, •NO can donate or accept an electron to become a nitrosonium cation
(NO+) or a nitroxyl anion (NO−) (Hughes 1999). All NO-related redox forms are respons-
ible for charge-transfer reactions, forming nitroxyl complexes or nitrogen species that are
ultimately responsible for oxidation, nitration or nitrosation reactions. When such a com-
plex array of reactions occurs under biological conditions, oxidative, nitrative and nitrosa-
tive stress are the result. For instance, NO+ exists in a pool of nitrosating species that
include N2O3 and that can nitrosate amine and thiols to corresponding N-nitrosoamines and
S-nitrosothiols. S-Nitrosothiols themselves can serve as •NO donors at pH values of biolog-
ical relevance (Hogg 2002; Giustarini et al 2003). 

Peroxynitrite ONOO-: chemistry and biology

Reaction of •NO with superoxide anion O2
•− yields peroxynitrite anion (oxoperoxoni-

trate(1−), ONOO−) and this process can be considered physiologically as a mechanism for
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regulating •NO activity (Beckman & Koppenol 1996;
Ferdinandy 2006). It is generally assumed that it can be
formed in-vivo from the reaction between superoxide (O2

•−)
and nitric oxide and that a rapid diffusion-controlled reaction
(k = 3.9–6.7 × 109 M−1s−1) takes place under conditions of
oxidative stress and inflammation (Huie & Padmaja 1993;
Kobayashi et al 1995; Pryor & Squadrito 1995; Radi et al
2001). In normal conditions, nitric oxide and superoxide radi-
cals are produced at different rates in the same cellular or
extracellular compartment and this prevents a massive pro-
duction of peroxynitrite. An alternative pathway to peroxyni-
trite formation may involve reaction of oxygen with nitroxyl
anion (NO−), in turn formed by •NO reduction (Hughes 1999;
Kirsch & de Groot 2002). 

Peroxynitrite ONOO− is protonated to its conjugated acid
ONOOH (hydrogen oxoperoxonitrate(1−), peroxynitrous
acid) and the two chemical species are collectively often
referred to as peroxynitrite. The weak acid ONOOH
(pKA = 7.49 ± 0.06 at 37°C) rapidly decomposes, with a short
half-life, at physiological pH (1.9 s at pH 7.4) (Beckman et al
1990). The main product from ONOO− decay in the absence
of targets is the stable nitrate anion (Koppenol 1998). 

The mechanism of peroxynitrite reactivity is still under
discussion, since peroxynitrite chemistry strongly depends on
the conditions of in-vitro studies and on the technology used
(Goldstein et al 1998, 1999; Richeson et al 1998). For
instance, it has been proposed that hyaluronic acid and related
saccharide oxidation by peroxynitrite is due to hydroxyl radi-
cal (Corsaro et al 2004). Peroxynitrite itself is a relatively
strong oxidant that is able to participate either in one-electron
oxidation of transition metal ion complexes or in the two-
electron oxidation of thiols (Alvarez & Radi 2003). Peroxyni-
trous acid can generate hydroxyl radical (•OH) and nitro
radical (NO2

•) by homolysis and these radicals become part
of the cascade of oxidation/nitration agents (Merenyi et al
1998). In-vivo, however, these species become relevant only
at acid pH (e.g. ischaemic tissue) because at physiological pH
the proton-catalysed decay is too slow to compete with bio-
targets that react directly with peroxynitrite. 

Under pathophysiological conditions, location and relative
rates of production of •NO and superoxide radicals are con-
stantly changing and this may be critical in determining the
amount and, ultimately, the reactivity of peroxynitrite. For
example, recombination of nitrogen dioxide arising from
homolysis of peroxynitrite with an excess of •NO could pro-
duce species such as N2O3, the principal nitrosating RNOS
(Jourd’heuil et al 2001). The cellular damage will be marginal
or rapidly repaired for short and low fluxes of peroxynitrite,
which are expected to be scavenged by endogenous antioxi-
dants. However, prolonged or large fluxes of peroxynitrite
will result in oxidation/nitration of critical cellular targets,
ranging from inactivation of enzymes and ion channels to
inhibition of mitochondrial respiration. This cannot be han-
dled by repair mechanisms and cells undergo basic cell death
pathways, apoptosis or necrosis. The exact mechanism of per-
oxynitrite-induced cell death initiation remains to be estab-
lished. Low concentrations of peroxynitrite may trigger
apoptotic death, while higher concentrations induce necrosis,
with cellular energetics (ATP level) serving as the switch
between these two modes of cell death (Virág et al 2003). 

At the molecular level, the main events that have been
attributed to peroxynitrite or its equivalent radicals include
oxidation of a variety of biomolecules such as proteins (Alva-
rez & Radi 2003), lipids (Carr et al 2000), carbohydrates
(Moro et al 1995), DNA (Yu et al 2005) and low molecular
mass antioxidants (Hogg et al 1994; Bartlett et al 1995; Botti
et al 2004). In circulation, peroxynitrite is able to lower the
total peroxyl-trapping capacity, deplete low molecular mass
antioxidants, oxidize thiol groups or induce lipid peroxidation
and tyrosine nitration (van der Vliet et al 1994; Gow et al
1996; Kocic et al 2004). 

Peroxynitrite does not react at appreciable rates with tyro-
sine and nitration occurs through a free radical mechanism
involving one-electron oxidation of tyrosine leading to
tyrosyl radical, which then rapidly reacts with NO2

• to yield
3-nitrotyrosine. On the other hand, the nitro radical (NO2

•) is
a strong oxidant and a potent nitrating agent able to oxidize
and nitrate free tyrosine in-vitro (Huie 1994; Goldstein et al
2000a). The complete picture of peroxynitrite-derived reac-
tions with tyrosine include the formation of 3,3′-dityrosine
and smaller amounts of 3-hydroxytyrosine (Radi et al 2001).
Formation of 3-nitrotyrosine is the evidence generally pre-
sented for peroxynitrite participation as a contributor to tissue
injury in several human diseases (Radi 2004), although other
species are involved in the oxidization/nitration of tyrosyl res-
idues in-vivo, for example myeloperoxidase, an enzyme capa-
ble of catalysing the above reactions in the presence of H2O2
and nitrite anion (the oxidation product of •NO) (Sampson
et al 1998). 

The involvement of peroxynitrite in protein nitrative mod-
ifications and its related role in pathological events has been
recently reviewed (Salvemini et al 2006). It has been
observed that the advent of recent methodologies such as pro-
teomics has revealed some specificity in protein site nitration
and consequent modification or loss of function that is espe-
cially relevant if this mechanism involves enzymes of patho-
physiological significance (Cassina et al 2000; Balafanova
et al 2002; Vadseth et al 2004). 

Above considerations on the biological effects of perox-
ynitrite suggest a definite role for this RNOS in a variety of
pathological events. These aspects are included in an exhaus-
tive review recently published by Olmos et al (2007), which
also covers a wide range of drugs capable of modulating the
biological and pathological effects of peroxynitrite. In a few
pathological events, the involvement of peroxynitrite has
been clearly evidenced, for example in the case of the patho-
genesis of renal ischaemia–reperfusion injury (Walker et al
2000; Rhyu et al 2002). Peroxynitrite has also been recog-
nized to play a considerable role in dopaminergic neurotox-
icity (Imam et al 2001), glaucoma (El-Remessy et al 2003),
and diabetes (Szabó et al 2002). 

Effect of CO2 on peroxynitrite reactivity

There is increasing evidence that the mechanism and reactiv-
ity of peroxynitrite in-vitro, and probably in-vivo, can be
altered by bicarbonate/carbon dioxide, which are present at
significant concentrations in biological systems (Gow et al
1996; Lymar & Hurst 1996; Uppu et al 1998; Berlett et al
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1998; Squadrito & Pryor 1998; Jourd’heuil et al 1999; Tien
et al 1999; Santos et al 2000; Vasela & Wilhelm 2002). 

At physiological concentration of CO2, peroxynitrite-
dependent nitration is enhanced (Gow et al 1996), whereas
oxidation is lowered (Berlett et al 1998; Ascenzi et al 2006).
The importance of the concentration of CO2 on peroxynitrite-
promoted reactions has been demonstrated for nitration/nitro-
sation (Uppu et al 2000) or production of thiyl, sulfinyl and
disulfide radicals (Bonini & Augusto 2001). The free radical
mechanism of tyrosine modification by peroxynitrite in the
presence and in the absence of the bicarbonate–carbon diox-
ide pair has been confirmed and the tyrosyl radical detected
by continuous-flow and spin-trapping electron paramagnetic
resonance (Pietraforte & Minetti 1997; Santos et al 2000). 

Nitrosoperoxycarbonate ONO2CO2
-: chemistry 

and biology 

The reaction between peroxynitrite anion and CO2 presents a
rate constant of 3.0 × 104 M−1 s−1, leading to the formation of
a postulated highly reactive short-lived secondary oxidant,
the nitrosoperoxycarbonate anion (1-carboxylato-2-nitrosodi-
oxidane anion, ONO2CO2

−) (Figure 1). Nitrosoperoxycar-
bonate anion can be considered as the biologically active
form of peroxynitrite that does not terminate the action of
peroxynitrite but rather redirects its reactivity (Squadrito &
Pryor 1998; Goldstein et al 2000b). The homolysis of
ONO2CO2

−, in fact, opens the route to other radical path-
ways, related to the formation of carbonate and nitro radicals
(CO3

•− and NO2
•) (Goldstein & Czapski 1998; Hodges &

Ingold 1999; Goldstein et al 2001; Meli et al 2002). The car-
bonate radical CO3

•− (trioxidocarbonate(1−)) has been
detected by electron paramagnetic resonance spectroscopy at
physiological pH (Bonini et al 1999) and is a strong one-elec-
tron oxidant that rapidly abstracts one electron, preferably
from tyrosine, to yield tyrosyl radical, which recombines with
NO2

• affording 3-nitrotyrosine. Nitration yields increase sig-
nificantly due to the formation of tyrosyl radical by CO3

•−, a
process more efficient than the one related to another oxidat-
ing species, •OH. In these conditions, dimerization of tyro-
sine also occurs, whereas hydroxylation is inhibited (Santos
et al 2000). Formation and localization of 3-nitrotyrosine and

3-hydroxytyrosine residues in proteins may be useful to dis-
tinguish between events mediated by peroxynitrite/nitro-
soperoxycarbonate and those induced by other RNOS. The
role of carbonate radical anion is becoming increasingly
important in biological oxidative stress (Squadrito & Pryor
1998; Augusto et al 2002). For instance, the CO2 effect on
peroxynitrite-mediated inhibition of human caspase reveals a
new role for related radicals in the tuning of cell processes
such as apoptosis (Ascenzi et al 2006). Finally, the reported
selective oxidization of guanine in double-stranded oligonu-
cleotides by carbonate radical (Shafirovich et al 2001) has
been recently confirmed as being responsible for the paradox-
ical selection of guanines in high ionization potential gua-
nine–cytosine sequences (Margolin et al 2006).

Peroxynitrite scavengers: a general outlook

In connection with increasing evidence on the pathophysio-
logical role of peroxynitrite, targeting peroxynitrite-induced
cytotoxic pathways might be proposed as a strategy to allevi-
ate adverse symptoms of a diverse variety of metabolic disor-
ders and diseases, especially during infection and
inflammation (Arteel et al 1999). Defence strategies against
peroxynitrite-mediated deleterious effects should be based on
prevention of formation of this RNOS and for this purpose
inhibitors of NOS or SOD could be considered, as well. A
more viable approach can rely upon scavengers able to inter-
cept peroxynitrite and absorb its total or maximum oxidative
capacity. Alternatively, repair of damage induced by the
action of peroxynitrite should be based on quenching gener-
ated radicals or on reaction with any secondary reactive spe-
cies produced (Klotz & Sies 2003). Furthermore, it should be
taken into account that stress signalling mechanisms affected
by peroxynitrite may interact with all above defence mecha-
nisms (Arteel et al 1999; Klotz & Sies 2003). Research on
natural and synthetic antioxidants capable of interfering with
peroxynitrite-mediated damage is, at present, actively pur-
sued and a vast array of compounds has been recently
reviewed (Olmos et al 2007). 

Among synthetic compounds, special attention should be
directed towards substituted metalloporphyrins, which are
promising therapeutics as peroxynitrite decomposition catalysts

ONOOCO2 CO2
 + NO3

.NO ONOO–
H+

ONOOH ONO . . OH NO3
 + H+

NO2
. + . OH

Men+

2RSH

NO2 + RSSR

O2
.–

Me(n + 1)+ + NO2
.

CO2

ONO . . OCO2

NO2
.+ CO3
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–––
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–

Figure 1 Peroxynitrite and nitrosoperoxycarbonate anion formation and reactivity: direct oxidation by peroxynitrite could be impaired by carbon
dioxide, and some oxidation/nitration processes could be attributed to carbonate radical anion and nitric radical reactivity. 
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(Crow 2000; Cuzzocrea et al 2001). Natural products that are
available in the human diet or that could be introduced into
human nutrition as nutraceuticals (Lee et al 2004) could con-
stitute a class of safe scavengers. 

Natural products from diet as peroxynitrite 
scavengers 

The human diet is rich in a great variety of micronutrients
with antioxidant properties (Halliwell 1996), fruits and vege-
tables being especially indicated for the prevention of cellular
oxidative damage (Prior 2003). This is particularly important
if protection from reactive oxygen species and RNOS is con-
sidered, in light of the recognized role of oxidative stress in
carcinogenesis (Halliwell 1999; Klaunig & Kamendulis
2004). Dietary factors may exert an important role in this
respect, going from regulation of •NO synthesis (Wu & Mei-
ninger 2002) to protection from RNOS-mediated damage
such as tyrosine nitration (Verhagen et al 1996; Kato et al
1997; Pannala et al 1997; Chung et al 1998). Polyphenols are
aromatic polyhydroxylated compounds widely distributed in
fruits, vegetables and beverages such as tea, beer and wine
(Manach et al 2004), and their antioxidant properties are well
recognized (Valdez et al 2004). Flavonoids constitute a broad
class of phenolic compounds ubiquitously present in fruits
and vegetables (Harborne & Williams 2000), and their health
benefits are well recognized (Yao et al 2004). The general fla-
vonoid structure consists of a flavan nucleus arranged in three
rings (A, B, C) with different levels of oxidation and pattern
of substitution. Flavonoids are active antioxidants in-vitro
against a wide array of radicals (Pietta 2000) and the most

important structural features in this respect are summarized
for quercetin (Figure 2A) as follows: (i) hydroxyl groups at
positions 3′ and 4′ in the B ring; (ii) unsaturation between
atoms 2 and 3 in conjugation with a 4-oxo function; and (iii)
hydroxyl groups at positions 3 and 5 (Cotelle 2001). The anti-
oxidant efficacy is less documented in-vivo, mainly because
of limited knowledge about their uptake in humans (Ross &
Kasum 2002). In fact, bioavailability and bioefficacy of fla-
vonoids and of polyphenols, in general, is far from being elu-
cidated and it is only recently that epidemiological studies
have been undertaken (Manach et al 2005). 

Flavonoid–peroxynitrite interaction 

Protection against the effects of peroxynitrite may be exhib-
ited by polyphenols as crude extracts in beverages (Bixby
et al 2005) or wine (Valdez et al 2004), and this has been
investigated in some detail with regard to flavonoids
(Ohshima et al 1998; Pannala et al 1999; Yokozawa et al
2003; Kim et al 2004; Shin et al 2005). 

Flavonoid scavenging activity against ONOO− has been
monitored through the oxidation of dihydrorhodamine 123
(Santos & Mira 2004) or NADH (Boveris et al 2002), nitra-
tion of tyrosine (Schroeder et al 2001a, b), and 8-nitro-gua-
nine formation (Ohshima et al 1998). In addition to chemical
and biochemical assays, the use of more sensitive biological
systems such as aortic ring chemiluminescence has been pro-
posed in order to elucidate the ability of flavonoids to inter-
fere in ONOO− mediated damage (Valdez et al 2004). 

In general, the mechanisms by which polyphenols are able
to scavenge peroxynitrite have been extensively studied
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Figure 2 A. Quercetin structural features responsible for antioxidant activity. B. Structurally related isoflavones from soybeans (genistein
(R1 = R2 = OH), daidzein (R1 = OH, R2 = H) and biochanin-A (R1 = OCH3, R2 = OH)) investigated as peroxynitrite scavengers. C. Structure of epicatechin. 
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in-vitro and a the bulk of the investigation has concerned fla-
vonoids, due to the richness of structural frameworks present
in this class of natural compounds. 

By studying structurally related flavonoids it has been
proved that the presence, number and position of hydroxyl
groups are very important in peroxynitrite scavenging activity.
The ortho-hydroxyl structure, especially the catechol group in
the B ring, seems essential for peroxynitrite scavenging activity
(Haenen et al 1997; Heijnen etal 2001b; Choi etal 2002), and
the 2,3-double bond (Santos & Mira 2004) also plays an import-
ant role. Furthermore, the activity related to the OH group at
position 3 depends on substitutents at positions 5 and 7 (Heijnen
etal 2001a), while the presence of the carbonyl moiety is not
essential for the scavenger activity (Choi etal 2002). By study-
ing three isoflavones occurring in soybeans (Figure 2B), it has
been observed that, in-vitro, peroxynitrite-mediated nitration
occurs on the tyrosine-like B-ring of genistein and daidzein. No
nitration product of biochanin-A was found and this confirms
that nitration is the preferential mechanism of monohydroxy-
lated structures (Boersma et al 1999). 

It would be useful to establish which flavonoid, if any, can
be expected to preferably scavenge peroxynitrite and perox-
ynitrite-deriving free radicals, but controversial information
has been obtained even when studying a single flavonoid. For
instance, epicatechin (Figure 2C), a flavonoid particularly
abundant in green tea and red wine, has been identified as a
selective inhibitor of •NO-related oxidation and nitration
reactions (Wippel et al 2004). However, Schroeder et al
(2001a) have shown that nitration is effectively suppressed by
this polyphenol and only marginal protective effects were
observed against oxidative reactions. 

Two possible mechanisms for polyphenol-mediated per-
oxynitrite scavenging, that is nitration and electron donation,
have been proposed (Pannala et al 1998). Studies on structure–
antioxidant activity relationship of polyphenols (Rice-Evans
et al 1996) or hydroxycinnamates (Kerry & Rice-Evans 1998)
have been extended to peroxynitrite-mediated scavenging by
flavonoids (Heijnen et al 2001b). It was proposed that
nitration of tyrosine can be inhibited by different mechanisms
and monohydroxylated structures act as alternative substrates
for nitration, whereas catechol structures are oxidized to
o-quinones. 

A limiting factor for determining the scavenger mecha-
nism of free radical damage in-vivo by flavonoids is their rel-
atively low plasma concentrations. Therefore, it is relevant to
mention structure–scavenging activity studies of some flavo-
noid metabolites such as 3-O-methyl and 3-O-glucuronate
(Pollard et al 2006). These metabolites are particularly
important because flavonoids are almost exclusively present
in the human diet as glycosylated derivates and it has been
shown that O-glucuronidation reduces flavonoid reactivity
towards ONOO−. It has also been revealed that O-methyla-
tion of the B-ring catechol containing epicatechin reduces its
electron donation ability, but at the same time favours the
formation of nitrated and even nitrosylated derivates. Cate-
chol-containing flavonoids, epicatechin and quercetin,
yielded oxidation products that are trapped by glutathione
with the formation of related conjugates. All these products
have been identified and may constitute novel circulating fla-
vonoid metabolites with unrevealed bioactivity. 

Effect of CO2 on peroxynitrite scavengers

It is now well established that peroxynitrite reacts faster with
CO2 than with most biological molecules and this event can
take place in any cellular compartment where peroxynitrite
and carbon dioxide are present (Squadrito & Pryor 2002).
Therefore, a new view of oxidative/nitrative stress related to
peroxynitrite has to be considered. Interesting reconsidera-
tions on the activity of peroxynitrite scavengers have
appeared in the literature and new perspectives merge from
published results. For instance, it has been reported that in the
presence of 25 mM bicarbonate, the ability of uric acid, ascor-
bate, Trolox and glutathione to inhibit peroxynitrite mediated
tyrosine and guanine nitration is decreased (Whiteman et al
2002). The recently disclosed lipoic acid protection by perox-
ynitrite induced damage (Rezk et al 2004) has been integrated
by pulse radiolysis studies, showing that the carbonate radical
is responsible for the formation of a one-electron oxidant
lipoic acid radical cation (Trujillo et al 2005). Another study
considered the ability of thiols, nitric oxide donors and purine
derivatives to inhibit peroxynitrite-induced dityrosine forma-
tion in a physiological buffer containing bicarbonate/CO2
(Ferdinandy & Schulz 2001). It was shown that both reduced
and oxidized thiols, nitric oxide donors and urate, but not
other purine derivatives, reduce peroxynitrite-induced dityro-
sine formation. 

It has been reported that the inhibition of peroxynitrite-
induced nitration of tyrosine by glutathione becomes highly
effective in the presence of carbon dioxide (Kirsch et al
2001). The reactivity of peroxynitrite with melatonin at vari-
ous pH values and different carbon dioxide concentrations
has been studied (Peyrot et al 2003), as well as the protection
of low density lipoprotein by phenolic compounds from per-
oxynitrite at physiological CO2 concentrations (Ferroni et al
2004). The reactivity of peroxynitrite with respect to dietary
phenolic antioxidants is significantly reduced in the presence
of CO2 (Ketsawatsakul et al 2000) and no scavenging activ-
ity was observed with a synthetic flavonoid, 7-substituted
rutin (Tibi & Koppenol 2000). However, CO3

•− and NO2
•

radicals arising from the nitrosoperoxycarbonate anion
hydrolysis have been efficiently scavenged by epicatechin
(Miau et al 2001), indicating that inhibition of tyrosine nitra-
tion is due to quenching of those radicals. Furthermore, it has
been demonstrated that epicatechin blocks peroxynitrite-
induced tyrosine nitration and dimerization by interfering
with the tyrosyl radical, rather than with peroxynitrite itself
(Schroeder et al 2001b). In any event, it can be concluded
that physiological concentrations of bicarbonate and forma-
tion of nitrosoperoxycarbonate anion or derived radicals can
modify the ability of polyphenols to prevent peroxynitrite-
mediated reactions. 

Conclusion 

Peroxynitrite reactivity, which is well established in-vitro,
is responsible for in-vivo oxidation/nitration reactions and
this RNOS is generally considered one of the major causative
agents of the nitrative stress. Peroxynitrite reaction with phys-
iological concentrations of CO2/bicarbonate through the inter-
mediate formation of nitrosoperoxycarbonate ONO2CO2

− and
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related radical species casts a new light on the role of peroxyni-
trite in cell damage. Scavenging of carbonate and nitro radicals
occurring from peroxynitrite/CO2 interaction could constitute a
new target for in-vivo prevention of oxidative/nitrative stress.
Understanding the molecular mechanisms that determine and
regulate the above radical-promoted injury and elucidation of
structure–activity relationships can constitute the basis for the
selection of new scavengers. In this respect, the high physio-
logical concentrations of CO2/bicarbonate should require the
assumption of high quantities of compounds, in order to con-
trast related oxidative/nitrative events. This creates an import-
ant perspective for natural and safe scavengers of oxidation/
nitration processes. Phenolic compounds, and flavonoids in
particular, are well suited for this purpose, since their ability to
counteract peroxynitrite-mediated damages at non-toxic con-
centrations is already well documented. 
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